By the way... Grades

Total homework score: 50% of total grade

Total lab score: 20% of total grade

Exam:
30% of total grade

Friday

- Beta mismatch invariant
- Chromaticity -- part II
 - @ due to sextupole field errors
 - o correction, using sextupole magnets
 - @ effects of sextupole fields on transverse motion
- Magnet Edge effects
- Discuss (briefly) homework problems

Mismatch Invariant

- Consider two solutions to $\beta'' + 4K\beta = const.$ through a focusing system
 - for example, one may be the periodic solution, the other a perturbed solution

Then,
$$J_{02}=MJ_{01}M^{-1}$$
 $J_{02}+\Delta J_{2}=M(J_{01}+\Delta J_{1})M^{-1}$ $\Delta J_{2}=M\Delta J_{1}M^{-1}$ $\det\Delta J_{2}=\det\Delta J_{1}\det\Delta J_{1}\det\Delta J_{1}$ $\det\Delta J_{2}=\det\Delta J_{1}$

Thus, $\det \Delta J$ for two solutions is a constant along a beamline

Expressions for Determinant of ΔJ

$$\det \Delta J = \det(J_1 - J_0)$$

$$= \begin{vmatrix} \Delta \alpha & \Delta \beta \\ -\Delta \gamma & -\Delta \alpha \end{vmatrix}$$

$$= -\Delta \alpha^2 + \Delta \beta \Delta \gamma$$

$$= 2 - (\beta_0 \gamma_1 + \beta_1 \gamma_0 - 2\alpha_0 \alpha_1)$$

$$= -\frac{\left(\frac{\Delta \beta}{\beta_0}\right)^2 + \left(\Delta \alpha - \alpha_0 \frac{\Delta \beta}{\beta_0}\right)^2}{1 + \frac{\Delta \beta}{\beta_0}} < 0$$

Injection Mismatch and Emittance Dilution

- Suppose beam arrives through a transfer line into a synchrotron, but the beta function of the line is not matched to the periodic beta function of the ring...
- Particles will begin to follow phase space trajectories dictated by the ring lattice; actual nonlinearities of the real accelerator will cause their motion to decohere
- Net result: emittance dilution

if
$$\epsilon \sim \langle x^2 \rangle$$
, then

$$\epsilon/\epsilon_0 = 1 - \frac{1}{2} \det \Delta J$$

Chromaticity -- Part II Sextupole Fields

Chromaticity due to sextupole field errors

$$B_y = B_0 (1 + b_1 x + b_2 x^2 + ...)$$

Chromaticity correction, using sextupole magnets

$$B_y = B'' (x^2 - y^2)$$

@ effects of sextupole fields on transverse motion

Magnet Edges

- Need to look at effects at entrance and exit of magnets (bending magnets in particular).
- Will look at small angle/displacement approximations, as usual; more detailed descriptions can be found in various references (Wiedemann's book, for example)
- More important in lower energy and/or magnets which produce large bending angles

Sector Magnets

Sector Dipole Magnet: "edge" of magnetic field is perpendicular to incoming/outgoing design trajectory:

Field points "out of the page"

Sector Magnets & Sector Focusing

Incoming ray displaced from ideal trajectory will experience more/less bending field, thus is "focused" toward axis in the bend plane:

Extra path length
$$= ds = d\theta \ x$$

so extra bend angle $= dx' = -ds/\rho$
 $dx' = -(d\theta/\rho)x = -(1/\rho^2)x \ ds$
or, $x'' = -(1/\rho^2)x$

Thus,
$$K_x = 1/\rho^2$$
, $K_y = 0$. (as seen previously, with $B' = 0$)

For short magnet with small bend angle, acts like lens in the bend plane with

$$\frac{1}{f_x} = \frac{\theta}{\rho}$$

Edge Focusing

- In an ideal sector magnet, the magnetic field begins/ends exactly at s = 0, L independent of transverse coordinates x, y relative to the design trajectory.
 - *i.e.*, the face of the magnet is perpendicular to the design trajectory at entrance/exit

Edge Focusing

However, could (and often do) have the faces at angles w.r.t. the design trajectory -provides "edge focusing"

■ Since our transverse coordinate *x* is everywhere perpendicular to *s*, then a particle entering with an offset will see more/less bending at the interface...

So, How to Model Edges?

In many cases, can consider edge effects to be perturbations to main motion, and treat as "impulse" kicks -- a "hard edge model"

(can do better modeling, if required...)

Edge Focusing -- radial

Radial Defocusing:

- So, for positive *x*, design trajectory "curves away" before particle reaches edge of magnetic field; thus, "defocusing" effect
- Similarly, upon exit

Vertical Focusing at Edge

From Maxwell's Eqs.,

$$\nabla \times \mathbf{B} = 0 \quad \rightarrow \quad \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y}$$

• and so...
$$\Delta y' = -\frac{\tan e}{\rho}y$$

If still not a believer, then ...

Edge Focusing -- vertical

Vertical Focusing:

$$\Delta y' = \frac{\Delta p_y}{p} = \frac{ev \int B_x(y)ds}{pv} = \frac{1}{B\rho} \int B_x ds$$

$$= -\frac{\sin e}{B\rho} \int B_h ds = -\frac{\tan e}{B\rho} \int (B_h \cos e) ds$$

$$= -\frac{\tan e}{B\rho} \int_{L_1}^{L_2} \vec{B} \cdot d\vec{s}$$

$$B_x = -B_h \sin e$$
$$B_x(y=0) = 0$$

$$B=0$$

$$B_{y}$$

$$y$$

$$y$$

$$L_{1}$$

$$B_{0}$$

$$B_{0}$$

$$h$$

$$\oint \vec{B} \cdot \vec{ds} = 0 + \int_{L_1}^{L_2} \vec{B} \cdot \vec{ds} - B_0 \cdot y + 0 = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Total Bend Magnet: Sector + Edges

■ Treat arbitrary edge angles as separate "lenses" at each end of a sector magnet...

Rectangular Bending Magnet

"Rectangular" Dipole Magnet:

In bending plane, each edge acts as a lens with focal length:

$$\frac{1}{f} = -\frac{\theta/2}{\rho} = -\frac{\theta}{2\rho}$$

For Sector Magnet, then

hor:
$$\frac{1}{f_x} \approx \frac{\theta}{\rho}$$

ver:
$$\frac{1}{f_u} \approx 0$$

For Rectangular Magnet, then

hor:
$$\frac{1}{f_x} \approx -\frac{\theta}{2\rho} + \frac{\theta}{\rho} - \frac{\theta}{2\rho} = 0$$
 ver: $\frac{1}{f_y} \approx \frac{\theta}{2\rho} + \frac{\theta}{2\rho} = \frac{\theta}{\rho}$

ver:
$$\frac{1}{f_y} \approx \frac{\theta}{2\rho} + \frac{\theta}{2\rho} = \frac{\theta}{\rho}$$

Tune change due to edge effects

- Suppose dipoles are located between quadrupoles of a FODO system, as in a large synchrotron
 - If use sector magnets:
 - $\Delta v_x = 1/4\pi < \beta > \theta/\rho$ * no. of dipoles = $<\beta >/(2\rho)$
 - $\Delta v_y = 0$
 - If use rectangular magnets:
 - $\Delta v_{\rm X} = 0$
 - $\Delta v_y = 1/4\pi < \beta > \theta/\rho$ * no. of dipoles = $<\beta >/(2\rho)$

Past Homework

- Problem Set 3 -- #1
- Problem Set 3 -- #4

Homework Due Monday

0 -- None